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Abstract. Thermal conductivity κxx(T ) under a field is investigated in dx2−y2-wave superconductors and
isotropic s-wave superconductors by the linear response theory, using a microscopic wave function of the
vortex lattice states. To study the origin of the different field dependence of κxx(T ) between higher and
lower temperature regions, we analyze the spatially-resolved thermal conductivity around a vortex at each
temperature, which is related to the spectrum of the local density of states. We also discuss the electric
conductivity in the same formulation for a comparison.

PACS. 74.60.Ec Mixed state – 74.25.Fy Transport properties – 74.25.Jb Electronic structure

1 Introduction

Recent advance to synthesize new exotic superconduct-
ing materials further requires the experimental probes to
precisely identify their pairing functions consisting of the
orbital and spin components. The orbital part of the pair-
ing function determines the nodal structure of the energy
gap on the Fermi surface. Thermal conductivity is one
of the standard techniques to probe the node of the gap
structure [1–6]. One can basically extract the gap topology
such as line or point nodes by analyzing its dependence
on the temperature T .

In the vortex state under a magnetic field, the thermal
conductivity is affected by the low energy quasiparticle
state around the vortex [6–8]. So far, the thermal con-
ductivity in the vortex state has been investigated by the
theory of gapless superconductors at high field [9,10], or
the theory considering vortices as scattering centers [11],
and estimating the electron-vortex scattering rate [12–14].
Recently, the thermal conductivity in the vortex state
of high-Tc superconductors attracts much attention, be-
cause the quasiparticle states are qualitatively different in
the vortex state between the d-wave pairing case and the
conventional s-wave pairing case. In the s-wave pairing,
low energy quasiparticle states are bound around the vor-
tex core [15,16]. In the d-wave pairing, low energy quasi-
particle states around the vortex extend outside of the
vortex core due to the line node of the superconducting
gap [17–22]. The contribution to the thermal conductivity
from the quasiparticles outside of the core is investigated
by the theory of the Doppler shift (or the Dirac fermion)
in the d-wave pairing case [23–25]. Since these theory ne-
glect the contribution from the quasiparticle within the
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vortex core [17], they are not applied to the s-wave super-
conductors.

Here, we calculate the T -dependence of the thermal
conductivity under a field. Our calculation is based on a
microscopic theory of Bogoliubov-de Gennes (BdG) equa-
tion for describing the vortex state [26–28] and standard
linear response theory for the thermal conductiv-
ity [29,30], assuming a clean-limit type II superconduc-
tors. Our calculation includes all contributions from the
inside and the outside region of the vortex core. The spa-
tial distribution of the thermal conductivity is calculated
from the wave function of the vortex lattice state, and an-
alyzed by compared with the spatial distribution of the
local density of states (LDOS).

The rest of this paper is organized as follows. In Sec-
tion 2, we describe our formulation based on the BdG
equation and the linear response theory. In Section 3,
we study the dependence of the thermal conductivity on
the temperature in the vortex state. We also show the
position-resolved thermal conductivity and its energy de-
composition, and discuss the relation with the LDOS. In
Section 4, we investigate the electric conductivity in the
same formulation, and discuss the difference of the quasi-
particle contribution between the thermal conductivity
and electric conductivity. The summary and discussions
are given in Section 5.

2 Formulation

2.1 Bogoliubov-de Gennes equation

We obtain the wave function in the vortex lattice state
by solving the BdG equation for the extended Hubbard
model [26–28] defined on a two dimensional square lattice.
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From this model, we obtain qualitatively the same quasi-
particle structure as previous theoretical studies both for
the s-wave [15,16] case and for the d-wave [17–22] case.
Here we briefly discuss the BdG equation for the s-wave
pairing and the d-wave pairing cases, which is written as

∑
j

(
Ki,j Di,j

D†i,j −K∗i,j

)(
uα(rj)
vα(rj)

)
= Eα

(
uα(ri)
vα(ri)

)
, (1)

where

Ki,j = −t̃i,j − δi,jµ, (2)

t̃i,j = ti,j exp
[
i
π

φ0

∫ rj

ri

A(r) · dr
]
, (3)

Di,j = δi,jU∆i,i +
1
2
Vi,j∆i,j (4)

with the on-site interaction U , the flux quantum φ0 and
the chemical potential µ. The nearest neighbor (NN)
transfer integral ti,j = t and the NN interaction Vi,j = V
for the NN site pair ri and ri±ê. The vector potential
A(r) = 1

2H× r in the symmetric gauge. Since we assume
an extreme type-II superconductor, the internal field term
of A(r) is neglected. The self-consistent condition for the
pair potential is

∆i,j = −1
2

∑
α

uα(ri)v∗α(rj) tanh(Eα/2T ). (5)

The s-wave pair potential is given by

∆s(ri) = U∆i,i. (6)

The dx2−y2-wave pair potential is

∆d(ri) =
V

4
(∆x̂,i +∆−x̂,i −∆ŷ,i −∆−ŷ,i) (7)

with

∆±ê,i = ∆i,i±ê exp

[
i
π

φ0

∫ (ri+ri±ê)/2

ri

A(r) · dr

]
· (8)

We study the case of the square vortex lattice where
the NN vortex is located in the direction of 45◦ from
the a-axis. This vortex lattice configuration is suggested
for d-wave superconductors and s-wave superconductors
with fourfold symmetric Fermi surface [20,31–34]. The
unit cell in our calculation is the square area of Nr2

sites where two vortices are accommodated. Then, H =
2φ0/(aNr)2 with the lattice constant a. Thus, we de-
note the field strength by Nr as HNr . Since H should
be commensurate with the atomic lattice, our formula-
tion does not treat the field dependence continuously.
We consider the area of Nk2 unit cells. By introduc-
ing the quasi-momentum of the magnetic Bloch state,
k = (2π/aNrNk)(lx, ly):(lx, ly = 1, 2, · · · , Nk), we set
uα(r) = ũα(r)eik·r, vα(r) = ṽα(r)eik·r. Then, the eigen-
state of α is labeled by k and the eigenvalues obtained by
this calculation within a unit cell.

The periodic boundary condition is given by the sym-
metry for the translation R = lxR0

x + lyR0
y, where R0

x =
(aNr, 0) and R0

y = (0, aNr) are unit vectors of the unit
cell for our calculation. Then, the translational relation
is given by ũα(r + R) = ũα(r)eiχ(r,R)/2, ṽα(r + R) =
ṽα(r)e−iχ(r,R)/2. Here,

χ(r,R) = −2π
φ0

A(R) · r− 2πlx(lx − ly) +
2π
φ0

(H× r0) ·R
(9)

in the symmetric gauge. The vortex center is located at
r0 + 1

4 (3R0
x + R0

y). The phase factor in equation (8) is
necessary to satisfy the translational relation ∆d(r+R) =
∆d(r)eiχ(r,R).

The following parameter values are chosen in the cal-
culation. The average electron density per site ∼ 0.9 by
appropriately adjusting the chemical potential µ. We nor-
malize all the energy scales by the transfer integral t. For
the s-wave case, we set U = −2.32t and V = 0. The re-
sulting order parameter ∆0 = 0.5t at T = H = 0, and
the superconducting transition temperature Tc ∼ 0.27t.
For the d-wave case, we set U = 0 and V = −4.2t. Then,
∆0 = 1.0t, and Tc ∼ 0.42t. Our results do not qualitatively
depend on the choice of these parameters.

2.2 Local density of states

In order to calculate physical quantities, we must con-
struct the Green’s functions from Eα,uα(r),vα(r) in the
formulation of imaginary time τ and Fermionic Matsub-
ara frequency ωn = 2πT (n+ 1

2 ). The Matsubara Green’s
functions is given by

ĝ(r, r′, iωn) =
(
g11(r, r′, iωn) g12(r, r′, iωn)
g21(r, r′, iωn) g22(r, r′, iωn)

)
, (10)

where matrix components are Fourier transformation of

g11(r, τ, r′, τ ′) = −
〈
Tτ [ψ↑(r, τ)ψ†↑(r

′, τ ′)]
〉
, (11)

g12(r, τ, r′, τ ′) = −
〈
Tτ [ψ↑(r, τ)ψ↓(r′, τ ′)]

〉
, (12)

g21(r, τ, r′, τ ′) = −
〈
Tτ [ψ†↓(r, τ)ψ†↑(r

′, τ ′)]
〉
, (13)

g22(r, τ, r′, τ ′) = −
〈
Tτ [ψ†↓(r, τ)ψ↓(r′, τ ′)]

〉
· (14)

The Green’s functions in equation (10) as follows [28],

g11(r, r′, iωn) =
∑
α

uα(r)u∗α(r′)
iωn −Eα

, (15)

g12(r, r′, iωn) =
∑
α

uα(r)v∗α(r′)
iωn −Eα

, (16)

g21(r, r′, iωn) =
∑
α

vα(r)u∗α(r′)
iωn −Eα

, (17)

g22(r, r′, iωn) =
∑
α

vα(r)v∗α(r′)
iωn −Eα

· (18)
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The LDOS is given by the thermal Green’s functions
as

N↑(E, r) = − 1
π

Img11(r, r, iωn → E + i0+)

=
∑
α

|uα(r)|2δ(E −Eα) (19)

for the up-spin electron contributions, and

N↓(E, r) =
1
π

Img22(r, r,−iωn → E + i0+)

=
∑
α

|vα(r)|2δ(E +Eα) (20)

for the down-spin electron contributions. Therefore, the
LDOS is given by

N(E, r)=N↑(E, r) +N↓(E, r)

=
∑
α

{
|uα(r)|2δ(E −Eα) + |vα(r)|2δ(E +Eα)

}
·

(21)

2.3 Linear response theory

We calculate the thermal conductivity following the
method of references [29] and [30]. According to the lin-
ear response theory, thermal current hx(r1) flowing to the
x-direction at r1-site is given by

hx(r1)=
1
T

∑
r2

Re
{

1
i

d
dΩ

Qxx(r1, r2, iΩn → Ω + i0+)
}
Ω→0

×(−∇xT (r2)), (22)

when the small temperature gradient −∇xT (r2) along the
x-direction is applied at r2-site. The heat-heat correlation
function is defined by

Qxx(r1τ1, r2τ2) = 〈Tτ [hx(r1τ1), hx(r2τ2)]〉
= T

∑
n

e−iΩn(τ1−τ2)Qxx(r1, r2, iΩn) (23)

in the formulation of imaginary time τ and Matsubara
frequency Ωn. The heat current operator h(rj , τ) is writ-
ten as

h(rj , τ) = − i
2m

(
Pj

∂

∂τ ′
−P†j′

∂

∂τ

)
×
∑
σ

ψ†σ(rj′ , τ ′)ψσ(rj , τ)|j=j′ ,τ=τ ′ (24)

in terms of the electron field operators ψσ(rj , τ). The
x-component of the momentum operator Pj in the dis-
cretized square lattice is defined as

[Pjψσ(rj , τ)]x = a
2mt

i
ei(π/φ0)a·A(rj+a/2)ψσ(rj + a, τ)

(25)

with a = (a, 0). Four electron field operators in equa-
tion (23) are decomposed by using the Matsubara Green’s
functions in equations (15–18) .

For the study of the thermal conductivity, we have to
introduce the dissipation term η in the Green’s function.
Then, the retarded and advanced Green’s functions are,
respectively, given by ĜR(r, r′, ω) = ĝ(r, r′, iωn → ω + iη)
and ĜA(r, r′, ω) = ĝ(r, r′, iωn → ω− iη). Therefore, in the
spectral representation, we obtain

ĝ(r, r′, iωn) =
∫ ∞
−∞

dω
2π

Â(r, r′, ω)
iωn − ω

, (26)

where

Â(r, r′, ω) = − 1
2πi

(
ĜR(r, r′, ω)− ĜA(r, r′, ω)

)
=
∑
α

δη(ω −Eα)

(
uα(r)u∗α(r′) uα(r)v∗α(r′)

vα(r)u∗α(r′) vα(r)v∗α(r′)

)
(27)

with δη(ω) = η[π(ω2 + η2)]−1.
As a result, the heat-heat correlation function is re-

duced to

d
dΩ

QP1P2(r1, r2, iΩn → Ω + i0+)
∣∣∣∣
Ω=0

=

1
4m2

∑
αβ

F (Eα, Eβ)

×[P1uα(r1)u∗β(r1′) + uα(r1)P†1′u
∗
β(r1′)

+P†1vα(r1)v∗β(r1′) + vα(r1)P1′v
∗
β(r1′)]

×[P2uα(r2)u∗β(r2′) + uα(r2)P†2′u
∗
β(r2′)

+P†2vα(r2)v∗β(r2′) + vα(r2)P2′v
∗
β(r2′)]|1=1′,2=2′ , (28)

where

F (Eα, Eβ) =
∫

dω
2π

∫
dω′

2π
δη(ω −Eα)δη(ω′ −Eβ)

×
[

P
ω2f(ω)− ω′2f(ω′)

(ω − ω′)2
+ iπω2f ′(ω)δ(ω − ω′)

]
. (29)

When the temperature gradient ∇xT (r2) is uniform,
the position-resolved thermal conductivity is written as

κxx(r1) =
hx(r1)
−∇xT

=
1
T

Im

{
d

dΩ
1
N

∑
r2

Qxx(r1, r2, iΩn → Ω + i0+)

}
· (30)

The spatially averaged thermal conductivity

κxx =
1
N

∑
r1

κxx(r1) (31)

is observed in the experiment. N is the total number of
sites. At zero field, our formulation for κxx is reduced to
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Fig. 1. Temperature dependence of κxx(T ) at H = 0, H20, H16 and H12. (a) s-wave case. (b) d-wave case.

Fig. 2. The vector plots of the κxx(r) in the s-wave pairing case at T/t=0.02 (a), 0.05 (b), 0.09 (c) and 0.13 (d). H = H20.
The vortices are located at the center and the four corners in the figure. Arrow size is proportional to flow strength.

the well-known formula for the uniform superconductors
in the presence of impurity scattering [29].

Using the wave function uα(r), vα(r) and the eigen-
energy Eα in equation (1), we calculate the dependence
of κxx on the temperature and the field. And to ana-
lyze this behavior, we also study the spatial structure of
κxx(r), i.e., the local contribution to κxx, Here, we neglect
the principal value integral term ReF (Eα, Eβ) in equa-
tion (29), because the contribution from this term van-
ishes in the spatial average of κxx(r). We typically choose
η = 0.01t.

3 Thermal conductivity

3.1 Temperature dependence of thermal conductivity

The T -dependence of κxx(T ) is shown in Figures 1a and b
for the s-wave and the d-wave pairing cases, respectively.
For the s-wave pairing, it shows exponential T -dependence
due to the full gap of the s-wave superconductivity at
H = 0. It changes into a T -linear behavior at low T re-
gion in the vortex state at H 6= 0, reflecting low energy
quasiparticle state around the vortex. We see also that
the deviation from the expected T dependence occurs
by the impurity effect at very low temperature around
T ∼ 2η = 0.02t. As for the d-wave pairing in Figure 1b,

The zero field case shows the T 2-behavior [5,4], which is
characteristic of the line node of the dx2−y2-wave super-
conductivity. For H 6= 0, it is modified to the T -linear
dependence [6,8] at low T region.

It is seen in Figure 1 that there exists a crossover tem-
perature T ∗ both in the s-wave and the d-wave pairing
cases, when we consider the dependence of κxx(T ) on the
magnetic field. At lower temperature T < T ∗, κxx(T ) in-
creases with raising magnetic field. However, at higher
temperature T > T ∗, κxx(T ) decreases as a function of H.
It is also noteworthy that κxx(T ) shows the T -linear be-
havior at T < T ∗, while it deviates from T -linear at
T > T ∗. In our parameter, T ∗ ∼ 0.10t in the s-wave case,
and T ∗ ∼ 0.06t in the d-wave case.

3.2 Position-resolved thermal conductivity

To understand the abovementioned difference between
T < T ∗ and T > T ∗, we analyze the position-resolved
κxx(r) of equation (30), and investigate how the local ther-
mal flow contributes to the total thermal conductivity.
The spatial structures of κxx(r) are shown in Figure 2 for
the s-wave pairing and in Figure 3 for the d-wave pair-
ing from low temperature to high temperature. As for the
vortex core size, the order parameter recovers at two or
three lattice sites from the vortex center at low tempera-
tures. It is seen for both pairing cases that the heat flows
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Fig. 3. The vector plots of the κxx(r) in the d-wave pairing case at T/t=0.02 (a), 0.05 (b), 0.09 (c) and 0.13 (d). H = H20.
The vortices are located at the center and the four corners in the figure. Arrow size is proportional to flow strength.

exclusively at the core region at low T . It comes from the
available low energy excitations around the vortex core.
Around the core region the heat flow extends to the NN
vortex direction. It is due to the inter-vortex quasiparticle
transfer effect. With increasing T , the the contributing
region of κxx(r) becomes wider around the vortex core
and the lines between NN vortices, as seen in Figures 2b
and 3b. On the other hand, at higher temperature T > T ∗,
the dominant contribution comes from the outside region
of the vortex core. Since κxx(r) is suppressed at the vortex
core, the vortex core behaves as if it is a scattering center
for the thermal flow. Also along the line connecting NN
vortices, κxx(r) is slightly suppressed. At further high T ,
the heat flows rather uniformly at all region. These higher
temperature structure of κxx(r) comes from the contri-
bution of the scattering state at E > |∆|, as discussed
later.

Let us discuss important differences between the s-
wave and the d-wave pairing cases. At lower temperature
T = 0.01t, κxx(r) is well localized at the core region in
the s-wave case (Fig. 2a) compared with the d-wave case
(Fig. 3a). This difference comes from the line node con-
tribution of the d-wave superconductivity. Due to the line
node, the low energy quasiparticle states extend outside of
the vortex core, especially to the 45◦ direction from a and
b axis of the crystal lattice [18,20]. At higher temperature
T = 0.09t, κxx(r) is well suppressed at the core region in
d-wave case (Fig. 2c), and it is not too suppressed at the
core region in s-wave case (Fig. 3c). To understand these
characteristic behavior of κxx(r), we consider the relation
between the thermal conductivity and the LDOS.

3.3 Relation with the local density of states

In equation (28), temperature dependence comes from the
function F (Eα, Eβ) in equation (29). It determines which
energy level dominantly contributes to the thermal con-
ductivity. To see it, we show the Eα and Eβ dependence
of ImF (Eα, Eβ) in Figure 4. From the figure, we see that
ImF (Eα, Eβ) becomes large on the line Eα = Eβ . Along
the line Eα = Eβ = E, we obtain

ImF (E,E) = E2f ′(E). (32)

Then, ImF (E,E) vanishes at E = 0, and has two peaks at
finite energy, which are symmetric with respect to E = 0.

~ 5√2T

-t
0

tEα
-t

0

t

Eβ

Im F(Eα,Eβ)

Fig. 4. Eα- and Eβ-dependence of the function ImF (Eα, Eβ)
of equation (29). In this figure, we set η/t=0.01 and T/t=0.10.

The distance of these peaks is about 5
√

2T . It means that
the quasiparticle states at these peak energy E ∼ ±2.5T
dominantly contributes to κxx(r). At low temperature,
the dominant contribution comes from the low energy
quasiparticle state around the vortex core. However, at
higher temperature, the scattering states at E > ∆(T )
dominantly contribute to the thermal conductivity. In
this respect, thermal conductivity is qualitatively differ-
ent from other physical quantities such as electric con-
ductivity, specific heat [17,19,26], nuclear magnetic relax-
ation time [27,28]. In these quantities, the quasiparticles
at E ∼ 0 gives largest contribution in all temperature
regions. We discuss the electric conductivity at Section 4.

At each energy level Eα, the contribution to the spatial
structure of κxx(r) is determined from the spatial distri-
bution of the wave functions uα(r) and vα(r). Then, we
show the spatial structure of the LDOS at several ener-
gies for the s-wave pairing in Figure 5 and for the d-wave
pairing in Figure 6. In the s-wave pairing, the low en-
ergy quasiparticle states are bound within the vortex core
region, and the quantized energy levels appear at half in-
teger energy En = (n + 1

2 )E∆ [15,16]. Here, E∆ is the
level spacing of the order ∆2

0/EF. ∆0 is the superconduct-
ing gap at zero field and EF is Fermi energy. With the
BdG theory at clean limit, since the vortex core radius
shrinks to the atomic scale with lowering temperature by
the Kramer-Pesch effect [35,36], the quantization effect
eminently appears at T ∼ 0. Then, there are no states just
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Fig. 5. Local density of states in the s-wave pairing case at E/∆=0.34 (a), 0.5 (b), 1.0 (c) and 1.5 (d). H = H20.
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Fig. 6. Local density of states in the d-wave pairing case at E/∆=0 (a), 0.5 (b), 1.0 (c) and 1.5 (d). H = H20.

at E = 0 because of the small gap by the quantization in
the s-wave pairing. At the lowest energy level E ∼ 0.17t in
Figure 5a, the LDOS N(E, r) has sharp peak at the vortex
center. It is a bound state in the vortex core. At higher
energy, the LDOS has peak along a circle around each
vortex (Fig. 5b). The radius of the circle increases with
raising energy. We also see the small ridge between NN
vortices. It is due to the inter-vortex transfer of the low
energy bound states. At E ∼ ∆, the circle of the LDOS
peak around the vortex overlaps each other (Fig. 5c). At
higher energy than ∆, the LDOS are reduced to the uni-
form structure, though the LDOS is slightly suppressed
at the vortex core region (Fig. 5d). These energy depen-
dence is consistent with the results of the quasiclassical
calculation [37,38].

For the d-wave pairing in Figure 6, since the low en-
ergy states extend outside of the vortex core due to the
node of the dx2−y2-wave superconducting gap, energy lev-
els becomes continuous [21,22,26–28]. In Figure 6a, there
is a peak of the LDOS at the vortex core at E = 0, which
corresponds to the zero-bias peak in th spectrum at the
vortex center. With increasing E, the peak of the LDOS
is shifted to the outside of the vortex, and it is slightly
suppressed at the vortex center, as shown in Figure 6b. In
the d-wave case, the large LDOS region shows the four-
fold symmetric structure instead of the circle structure of
the s-wave case. At E ∼ ∆, the LDOS peak around the
vortex is shifted to the boundary region between vortices
(Fig. 6c). At higher energy than ∆, the LDOS are reduced
to the uniform structure (Fig. 6d).

3.4 Energy decomposition of thermal conductivity

To discuss the contribution of the LDOS structure to
the spatial structure of κxx(r), We decompose κxx(r) of

Fig. 7. Energy decomposed κxx(r) in the s-wave case at
T/t = 0.02 (a,c) and 0.09 (b,d). (a) and (b) are for the low
energy contribution from |Eα|, |Eβ| < ∆(T )/2. (c) and (d) are
for the high energy contribution from |Eα|, |Eβ| > ∆(T )/2.

equations (28, 30) into the low energy contribution from
|Eα|, |Eβ | < ∆(T )/2 and the high energy contribution
from |Eα|, |Eβ | > ∆(T )/2. The s-wave pairing case is
shown in Figure 7. The upper panels (a) and (b) present
the low energy contribution of κxx(r), which are local-
ized around the vortex core and along the line connect-
ing NN vortices. It is because the low energy states for
|E| < ∆(T ) are localized around the vortex core and there
are some inter-vortex quasiparticle transfer along the NN
vortices direction, as shown in Figure 5a and b. The lower
panels (c) and (d) show the higher energy contribution of
κxx(r) from |Eα|, |Eβ | > ∆(T )/2. In this energy range, the
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Fig. 8. Energy decomposed κxx(r) in the d-wave pairing case.
at T/t = 0.02 (a,c) and 0.09 (b,d). (a) and (b) are for the low
energy contribution from |Eα|, |Eβ| < ∆(T )/2. (c) and (d) are
for the high energy contribution from |Eα|, |Eβ | > ∆(T )/2.

wave functions are dominantly located outside of the vor-
tex core, as shown in Figure 5c and d. Then, the higher
energy contribution of κxx(r) is suppressed around the
vortex core. The suppression along the NN vortices direc-
tions shown in Figure 7d also reflects the spatial structure
of the LDOS in Figure 5d. At low temperature in Fig-
ure 7c, spatial structure is determined by the wave func-
tion at E ∼ ∆(T )/2 in Figure 5b. However, at high tem-
perature case in Figure 7d, the contribution of the wave
function at E > ∆(T ) in Figure 5d is dominant.

The d-wave pairing case is shown in Figure 8. In the
upper panels (a) and (b) for the lower energy contribution,
κxx(r) is larger around the core and the lines connecting
NN vortices. It is broadly extending around the vortex,
compared with the s-wave case, because the wave func-
tions are also broadly extending around the vortex core
as shown in Figure 6a. At higher temperature, κxx(r) is
large outside of the core in Figure 8b, though LDOS at
E = ∆(T )/2 are little localized around the core. In the
lower panels (c) and (d) for the higher energy contribution,
κxx(r) is large outside of the core at every temperature.

Next, we investigate the weight of the energy-
decomposed contribution for the spatially averaged κxx.
The temperature dependence is presented in Figure 9. For
both pairing cases, we can see that the low (high) en-
ergy contribution is dominant at low (high) temperature.
The low (high) energy contribution of the d-wave pairing
case is larger (smaller) compared with the s-wave pair-
ing case. It is because the d-wave pairing case has larger
DOS at |E| < ∆(T ) because the low energy excitation
widely extends outside of the vortex core region due to
the line node of the superconducting gap. These DOS dif-
ference between the d-wave and the s-wave pairing cases
is also shown by the quasiclassical calculation (Fig. 18 of
Ref. [20]). The very low temperature behavior in Figure 9a

in the s-wave pairing at T < 10−2 reflects the small gap
of the quantized energy level in the s-wave pairing.

4 Electric conductivity

We can also calculate the electric conductivity, if we con-
sider the electric current operator instead of the ther-
mal current operator. Following the same procedure in
Section 2.3, the position-resolved electric conductivity is
given by

σxx(r1) =

Im

{
d

dΩ
1
N

∑
r2

Qel
xx(r1, r2, iΩn → Ω + i0+)

}∣∣∣∣∣
Ω→0

(33)

with the correlation function

Qel
xx(r1τ1, r2τ2)= 〈Tτ [jx(r1τ1), jx(r2τ2)]〉

=T
∑
n

e−iΩn(τ1−τ2)Qel
xx(r1, r2, iΩn) (34)

of the electric current operator

j(rj , τ) =
|e|
2m

(Pj + P†j′)

×
∑
σ

ψ†σ(rj′ , τ)ψσ(rj , τ)|j=j′ . (35)

Using the wave functions of the BdG equation, we obtain

d
dΩ

Qel
P1P2

(r1, r2, iΩn → Ω + i0+)
∣∣∣∣
Ω=0

=

− |e|
2

4m2

∑
αβ

F el(Eα, Eβ)

×
[
P1uα(r1)u∗β(r1′) + uα(r1)P†1′u

∗
β(r1′)

− P†1vα(r1)v∗β(r1′)− vα(r1)P1′v
∗
β(r1′)

]
×
[
P2uα(r2)u∗β(r2′) + uα(r2)P†2′u

∗
β(r2′)

− P†2vα(r2)v∗β(r2′)− vα(r2)P2′v
∗
β(r2′)

]∣∣∣
1=1′,2=2′

, (36)

where

F el(Eα, Eβ) =
∫

dω
2π

∫
dω′

2π
δη(ω −Eα)δη(ω′ −Eβ)

×
[
P
f(ω)− f(ω′)

(ω − ω′)2
+ iπf ′(ω)δ(ω − ω′)

]
·

(37)

We show the Eα and Eβ dependence of ImF el(Eα, Eβ)
in Figure 10. The principal value part of equation (37)
vanishes by the spatial average of σxx(r1). Then, we con-
sider only the contribution of ImF el(Eα, Eβ), neglect-
ing ReF el(Eα, Eβ). The function ImF el(Eα, Eβ) becomes
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Fig. 9. Temperature dependence of the energy-decomposed κxx. The low energy contributions from |Eα|, |Eβ| < ∆(T )/2 and
the high energy contributions from |Eα|, |Eβ| > ∆(T )/2 are shown with the total κxx(Solid line). H = H20. (a) s-wave case.
(b) d-wave case. The arrows Ta-Td show T/t=0.02, 0.05, 0.09 and 0.13, respectively. We show κxx(r) in Figures 2, 3, 7 and 8 at
these temperatures.

-t
0

tEα
-t
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t

Eβ

Im Fel(Eα,Eβ)

Fig. 10. Eα- and Eβ-dependence of the function
ImF el(Eα, Eβ) of equation (37). In this figure, we set η/t=0.01
and T/t=0.10.

large for Eα ∼ Eβ . Along the line Eα = Eβ = E, we ob-
tain ImF el(E,E) = f ′(E). It has maximum at E = 0 in
all temperature region. Then, the low energy quasiparti-
cle states around the vortex core dominantly contribute to
σxx(r) even at higher T . We present σxx(r) in Figure 11a,
b for the s-wave pairing case and in Figure 11c, d for
the d-wave pairing case. Even at higher temperature (b
and d), the dominant contribution to σxx comes from the
vortex core region as in the low temperature case (a and
c). This is contrasted with the thermal conductivity case,
whose dominant contribution comes from the outside of
the vortex core at high temperature, as discussed in Sec-
tion 3. Compared to the s-wave pairing case (a and b),
σxx(r) widely extends toward the outside of the vortex
core in the d-wave pairing case (c and d). It reflects the
extending low energy quasiparticles due to the line node
of the d-wave superconducting gap.

5 Summary and discussions

We have formulated thermal conductivity in mixed state
based on a microscopic theory of BdG equation and linear

Fig. 11. The vector plots of the position-resolved electric con-
ductivity σxx(r) in the s-wave pairing case at T/t=0.02 (a) and
0.09 (b), and in the d-wave pairing case at T/t=0.02 (c) and
0.09 (d). H = H20. The vortices are located at the center
and the four corners in the figure. Arrow size is proportional
to flow strength.

response theory. The T -dependence of thermal conductiv-
ity κxx for the s-wave and the d-wave pairing is calculated.
Their behaviors are analyzed in terms of the position-
resolved thermal conductivity κxx(r). And we discuss the
relation between κxx(r) and the LDOS of the quasiparti-
cles around the vortex.

There is a crossover temperature T ∗. At lower tem-
perature T < T ∗, κxx is increased with raising magnetic
field. In these temperature region, thermal flow is domi-
nantly carried by the low energy quasiparticles around the
vortex core and their inter-vortex transfer. Then, κxx(r)
is large around the vortex core and the lines connecting
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NN vortices. On the other hand, at higher temperature
T > T ∗, κxx is decreased at higher field. In these temper-
ature, the contribution to the thermal conductivity comes
from higher energy quasiparticles including the scattering
state at E > ∆(T ). Therefore, κxx(r) is suppressed at
the vortex core region. Then, vortex core works as if the
scattering center for the thermal flow. These contributions
from the higher energy states at higher temperature is a
characteristic of thermal conductivity. For other quantities
such as electric conductivity, specific heat, nuclear mag-
netic relaxation time, the low energy state gives largest
contribution at all temperature regions.

The difference between the s-wave pairing and the d-
wave pairing comes from the node structure of the super-
conducting gap. The d-wave pairing case has larger contri-
bution from the low energy quasiparticle states. The low
temperature distribution of κxx(r) is broadly extending
around the vortex in the d-wave case, because the wave
functions are broadly extending around the vortex core
due to the node structure.

Our calculation has reproduced experimental results
of the T -linear behavior at low temperature in the vortex
states (H 6= 0), and the existence of the crossover tem-
perature T ∗ in the field dependence. The crossover tem-
perature T ∗ are reported both in the conventional s-wave
superconductor such as Nb (Ref. [7]) and in the high-Tc

superconductors such as Bi2Sr2CaCu2O8 (Ref. [8]) and
in the f -wave superconductor UPt3 (Ref. [6]). These ex-
perimental results have been explained as follows. At low
temperature, vortex assist the thermal flow due to the
low energy quasiparticle state around the vortex core. At
higher temperature, vortex behaves as the scattering cen-
ter for the thermal flow. Our numerical results of κxx(r)
are consistent to this picture. While the field dependence
of κxx is important, our calculation cannot examine the
continuous field dependence because we consider the field
H = 2φ0/(aNr)2 depending on the size of the unit cell.
At higher temperature, there appears the effect of the T -
depending η due to the inelastic scattering by antiferro
magnetic spin fluctuations [39–41]. For the further exten-
sion of our calculation, we will examine the effect of the
T -dependence or the position dependence (inside or out-
side of the vortex core) of the scattering parameter η.

The authors thank N. Hayashi for useful discussions.
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